Halliday Fundamentos de Física Volume 3

www.grupogen.com.br

http://gen-io.grupogen.com.br

O **GEN | Grupo Editorial Nacional** reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense, Método, E.P.U. e Forense Universitária

O GEN-IO | GEN – Informação Online é o repositório de material suplementar dos livros dessas editoras

www.grupogen.com.br

http://gen-io.grupogen.com.br

Capítulo 25

Capacitância

Capacitor

Um capacitor é um dispositivo elétrico que permite armazenar energia potencial em um campo elétrico.

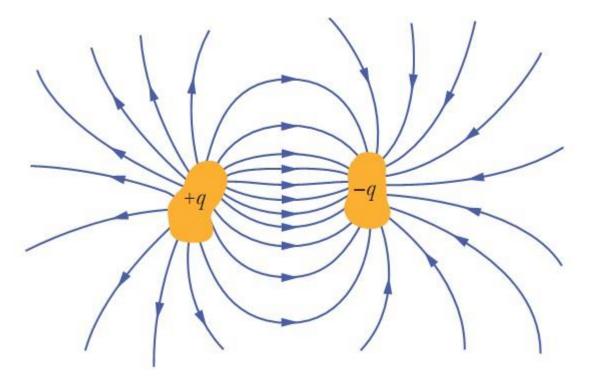


Figura 25-2 Dois condutores, isolados entre si e do ambiente, formam um *capacitor*. Quando um capacitor está carregado, as cargas dos condutores, ou *placas*, como são chamados, têm o mesmo valor absoluto *q* e sinais opostos. (*Paul Silvermann/Fundamental Photographs*)

Capacitância

Quando um capacitor está carregado, as placas contêm cargas de mesmo valor absoluto e sinais opostos, +q e -q. Entretanto, por convenção, dizemos que a carga de um capacitor é q, o valor absoluto da carga de uma das placas.

A carga q e a diferença de potencial V de um capacitor são proporcionais:

$$q \propto V \qquad \Rightarrow \qquad q = CV$$

A constante de proporcionalidade C é chamada de **capacitância** do capacitor; o valor de C depende da geometria das placas, mas $n\tilde{a}o$ depende da carga nem da diferença de potencial.

A unidade de capacitância do SI é o farad (F): 1 farad (1 F) = 1 coulomb por volt = 1 C/V.

A representação gráfica do capacitor em um circuito é

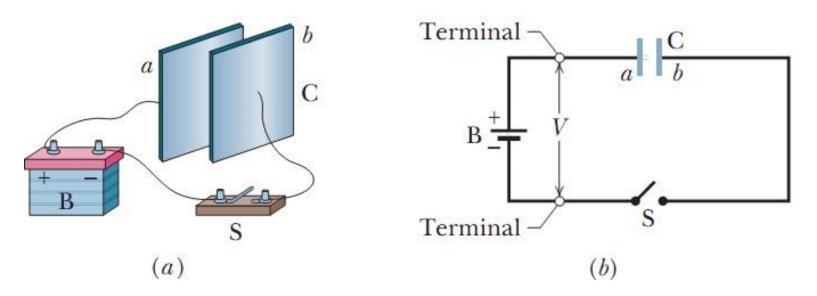
placas paralelas, feito de duas placas de área A separadas por uma distância d. As cargas da superfície interna das placas têm o mesmo valor absoluto q e sinais opostos. (b) Como mostram as linhas de campo, o campo elétrico produzido pelas placas carregadas é uniforme na região central entre as placas. Nas bordas das placas, o campo não é uniforme.

Figura 25-3 (a) Um capacitor de



Carga de um Capacitor

Podemos carregar um ligando-o a uma fonte de tensão, por exemplo, uma bateria.



Dizemos que o circuito da Figura acima está interrompido porque a chave S está aberta e, portanto, não existe uma ligação elétrica entre os terminais. Quando a chave é fechada, passa a existir uma ligação elétrica entre os terminais, o circuito fica completo e cargas começam a circular pelos componentes do circuito.

Quando as placas são carregadas, a diferença de potencial entre as placas aumenta até se tornar igual à diferença de potencial V entre os terminais da bateria. Com o campo elétrico igual a zero, os elétrons param de se deslocar, e dizemos que o capacitor está totalmente carregado, com uma diferença de potencial V entre as placas e uma carga de valor absoluto q = CV em cada placa.

Para calcular a capacitância em uma determinada geometria, basta seguir os seguintes passos

- 1. Supor uma carga q sobre as placas
- 2. Calcular o campo elétrico \vec{E} entre as placas em função da carga q (usar a Lei de Gauss).
- 3. Conhecendo \vec{E} , calcular a ddp V entre as placas.
- 4. Calcular C através de q = CV.

Usamos a lei de Gauss para relacionar *q* e *E* e integramos *E* para obter a diferença de potencial.

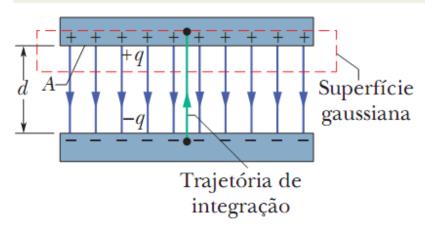


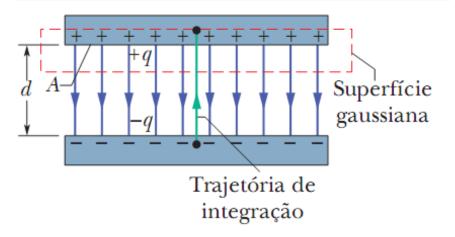
Figura 25-5 Capacitor de placas paralelas carregado. Uma superfície gaussiana envolve a carga da placa positiva. A integração da Eq. 25-6 é executada ao longo de uma trajetória que vai diretamente da placa negativa para a placa positiva.

• Calculando \vec{E}

Para relacionar o campo elétrico entre as placas de um capacitor à carga q de uma das placas, usamos a lei de Gauss:

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = q$$

Usamos a lei de Gauss para relacionar q e E e integramos E para obter a diferença de potencial.



onde q é a carga envolvida por uma superfície gaussiana e $\oint \vec{E} \cdot d\vec{A}$ é o fluxo elétrico que atravessa a superfície. No caso especial da figura,

$$q = \varepsilon_0 E A$$

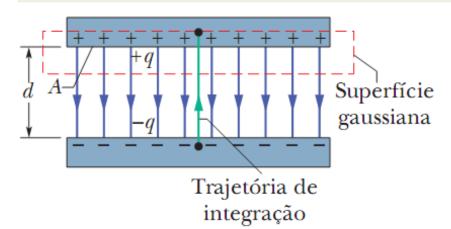
onde A é a área da parte da superfície gaussiana através da qual existe um fluxo.

Calculando V

A diferença de potencial entre as placas de um capacitor está relacionada ao campo elétrico através da equação

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$$

Usamos a lei de Gauss para relacionar q e E e integramos E para obter a diferença de potencial.



Seguindo o trajeto de integração da figura, temos que o integrando se torna

$$\vec{E} \cdot d\vec{s} = -E \, ds$$

Por simplicidade de notação, chamaremos de V a diferença V_f - V_i . Assim, a integral para o cálculo do potencial se reduz a simplesmente

$$V = \int_{-}^{+} E \, ds$$

• Capacitância do capacitor de placas paralelas

A diferença de potencial entre as placas de um capacitor está relacionada ao campo elétrico através da equação

$$V = \int_{-}^{+} E \, ds = E \int_{0}^{d} ds = E d$$

A carga acumulada nas placas é dada pela expressão

$$q = \varepsilon_0 E A$$

Assim, aplicando estas equações na definição de capacitância,

$$q = CV \rightarrow \varepsilon_0 EA = CEd$$

Temos finalmente

$$C = \frac{\varepsilon_0 A}{d}$$

Capacitância de um capacitor de placas paralelas

onde $\varepsilon_0 = 8.85 \times 10^{-12} \,\text{C}^2/\text{N} \cdot \text{m}^2$

Cálculo da Capacitância: Capacitor Cilíndrico

Como superfície gaussiana, escolhemos um cilindro de comprimento L e raio r, visto de perfil na Figura, que é coaxial com os outros dois cilindros e envolve o cilindro interno (e, portanto, a carga q desse cilindro). O campo se relaciona com a carga através da expressão

$$q = \varepsilon_0 E A = \varepsilon_0 E (2\pi r L)$$

Logo

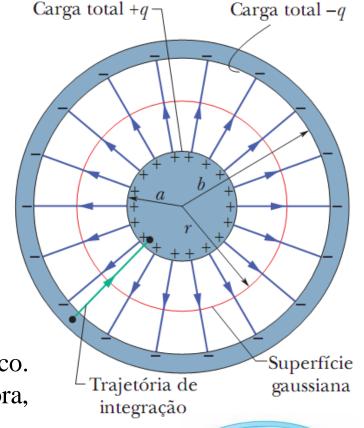
$$E = \frac{q}{2\pi\varepsilon_0 Lr}$$

O potencial pode ser obtido integrando o campo elétrico. Como o sentido de integração é de dentro para fora, então fazemos ds = -dr, assim

$$V = \int_{-}^{+} E \, ds = -\frac{q}{2\pi\varepsilon_0 L} \int_{b}^{a} \frac{dr}{r} = \frac{q}{2\pi\varepsilon_0 L} \ln\left(\frac{b}{a}\right)$$

Da definição de capacitância, temos

$$C = \frac{q}{V} \Rightarrow \frac{V}{q} = \frac{1}{2\pi\varepsilon_0 L} \ln\left(\frac{b}{a}\right) \longrightarrow C = 2\pi\varepsilon_0 \frac{L}{\ln\left(\frac{b}{a}\right)}$$
Capacitor cilíndrico



Cálculo da Capacitância: Capacitor Esférico

Similarmente ao tratamento dado para o capacitor cilíndrico, como superfície gaussiana, escolhemos uma esfera de raio r, mostrada em corte conforme a Figura, que é concêntrica com as outras duas esferas e envolve apenas a esfera interna.

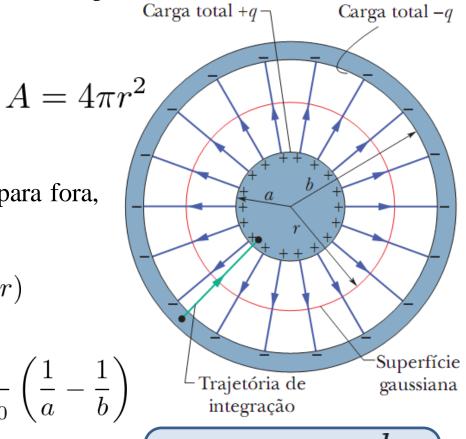
$$q = \varepsilon_0 E A = \varepsilon_0 E (4\pi r^2)$$
$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

Como o sentido de integração é de dentro para fora, então fazemos ds = -dr, assim

$$V = \int_{-}^{+} E \, ds = \int_{h}^{a} \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (-dr)$$

$$V = -\frac{q}{4\pi\varepsilon_0} \int_b^a \frac{dr}{r^2} = \frac{q}{4\pi\varepsilon_0} \frac{1}{r} \bigg|_b^a = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{b-a}{ab} \right) \quad \Rightarrow \quad \frac{V}{q} = \frac{1}{4\pi\varepsilon_0} \left(\frac{b-a}{ab} \right)$$



$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$$

Capacitor esférico

Cálculo da Capacitância: Esfera Isolada

Podemos atribuir uma capacitância a uma única esfera de raio *R* feita de material condutor supondo que a "placa que falta" é uma casca esférica condutora de raio infinito.

As linhas de campo que deixam a superfície de um condutor positivamente carregado devem terminar em algum lugar; as paredes da sala em que se encontra o condutor podem ser consideradas como boa aproximação de uma esfera de raio infinito.

Para determinar a capacitância da esfera, escrevemos a capacitância na forma

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a} = 4\pi\varepsilon_0 \frac{b}{b} \frac{a}{1-\frac{a}{b}} \quad \Rightarrow \quad C = 4\pi\varepsilon_0 \frac{a}{1-\frac{a}{b}}$$

Fazendo a = R e $b \rightarrow \infty$, obtemos

$$C = \lim_{b \to \infty} 4\pi \varepsilon_0 \frac{a}{1 - \frac{a}{b}} = 4\pi \varepsilon_0 a$$

$$C = 4\pi\varepsilon_0 R$$

Capacitância da esfera isolada

Exemplo: Carregamento de um Capacitor de Placas Paralelas

Na Fig. 25-7*a*, a chave S é fechada para ligar um capacitor descarregado de capacitância $C=0.25~\mu F$ a uma bateria cuja diferença de potencial é V=12~V. A placa inferior do capacitor tem uma espessura L=0.50~cm, uma área $A=2.0\times10^{-4}~m^2$ e é feita de cobre, material no qual a densidade de elétrons de condução é $n=8.49\times10^{28}$ elétrons/m³. De que profundidade *d* no interior da placa (Fig. 25-7*b*) os elétrons se movem para a superfície da placa quando o capacitor está totalmente carregado?

IDEIA-CHAVE

A carga que se acumula na placa inferior está relacionada à capacitância e à diferença de potencial entre os terminais do capacitor através da Eq. 25-1 (q = CV).

Cálculos Como a placa inferior está ligada ao terminal negativo da bateria, elétrons de condução se movem para a superfície da placa. De acordo com a Eq. 25-1, a carga total que se acumula na superfície é

$$q = CV = (0.25 \times 10^{-6} \,\mathrm{F})(12 \,\mathrm{V})$$

= 3.0 × 10⁻⁶ C.

Dividindo este resultado por e, obtemos o número N de elétrons de condução que se acumulam na superfície:

$$N = \frac{q}{e} = \frac{3.0 \times 10^{-6} \text{ C}}{1,602 \times 10^{-19} \text{ C}}$$
$$= 1,873 \times 10^{13} \text{ elétrons.}$$

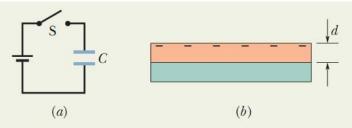


Figura 25-7 (*a*) Circuito com uma bateria e um capacitor. (*b*) Placa inferior do capacitor.

Esses elétrons vêm de um volume que é o produto da área da placa *A* pela profundidade *d* que queremos determinar. Para esse volume, a densidade de elétrons de condução (elétrons por unidade de volume) pode ser escrita na forma

$$n=\frac{N}{Ad},$$

ou

$$d = \frac{N}{An} = \frac{1,873 \times 10^{13} \text{ elétrons}}{(2,0 \times 10^{-4} \text{ m}^2) (8,49 \times 10^{28} \text{ elétrons/m}^3)}$$
$$= 1,1 \times 10^{-12} \text{ m} = 1,1 \text{ pm}. \qquad \text{(Resposta)}$$

Em linguagem coloquial, dizemos que a bateria carrega o capacitor fornecendo elétrons a uma placa e removendo elétrons da outra placa. Na verdade, porém, o que a bateria faz é criar um campo elétrico nos fios e na placa que desloca elétrons para a superfície superior da placa inferior e remove elétrons da superfície inferior da placa superior.

Capacitores em Paralelo (mesma DDP)

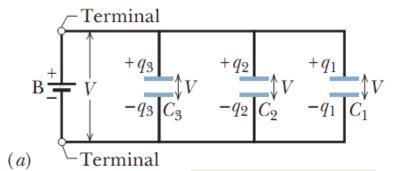
- ❖ Quando uma diferença de potencial V é aplicada a vários capacitores ligados em paralelo, a diferença de potencial V é a mesma entre as placas de todos os capacitores, e a carga total q armazenada nos capacitores é a soma das cargas armazenadas individualmente nos capacitores Figura (a).
- ❖ Capacitores ligados em paralelo podem ser substituídos por um capacitor equivalente com a mesma carga total *q* e a mesma diferença de potencial *V* que os capacitores originais Figura (b). Logo,

$$q_1 = C_1 V \; ; \quad q_2 = C_2 V \; ; \quad q_3 = C_3 V$$

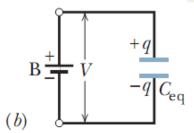
$$q = C_{eq}V$$

$$q = q_1 + q_2 + q_3 = (C_1 + C_2 + C_3)V$$

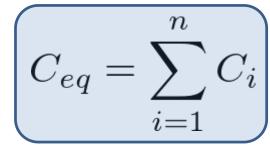
$$C_{eq}V = (C_1 + C_2 + C_3)V$$



Capacitores em paralelo têm o mesmo *V*.



$$C_{eq} = (C_1 + C_2 + C_3)$$



n capacitores em paralelo

Capacitores em Série (mesma carga)

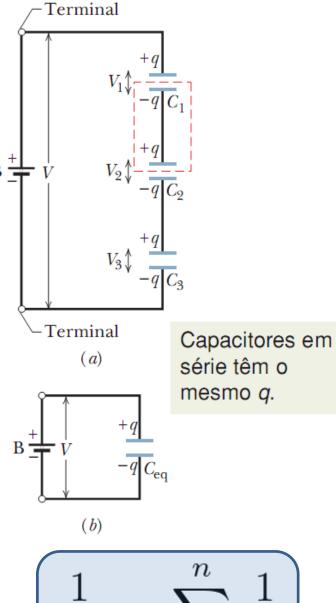
- ❖ Quando uma diferença de potencial V é aplicada a vários capacitores ligados em série, a carga q armazenada é a mesma em todos os capacitores, e a soma das diferenças de potencial entre as placas dos capacitores é igual à diferença de potencial aplicada V Figura (a).
- ❖ Capacitores ligados em série podem ser substituídos por um capacitor equivalente com a mesma carga q e a mesma diferença de potencial V que os capacitores originais Figura (b).

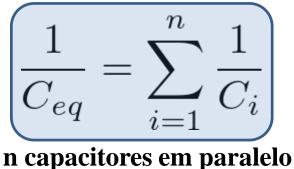
$$V_1 = \frac{q}{C_1} \; ; \quad V_2 = \frac{q}{C_2} \; ; \quad V_3 = \frac{q}{C_3}$$

$$V = \frac{q}{C_{eq}}$$

$$V = V_1 + V_2 + V_3 = \frac{q}{C_1} + \frac{q}{C_2} + \frac{q}{C_3}$$

$$\frac{\cancel{A}}{C_{eq}} = \cancel{A} \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \quad \longrightarrow \quad \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$





Exemplo: Capacitores em Paralelo e em Série

(a) Determine a capacitância equivalente da combinação de capacitores que aparece na Fig. 25-10a, à qual é aplicada uma diferença de potencial V. Os valores das capacitâncias são os seguintes:

$$C_1 = 12.0 \ \mu\text{F}, \quad C_2 = 5.30 \ \mu\text{F} \quad \text{e} \quad C_3 = 4.50 \ \mu\text{F}.$$

$$C_{12} = C_1 + C_2 = 12,0 \ \mu\text{F} + 5,30 \ \mu\text{F} = 17,3 \ \mu\text{F}$$

$$\frac{1}{C_{123}} = \frac{1}{C_{12}} + \frac{1}{C_3}$$

$$= \frac{1}{17,3 \ \mu\text{F}} + \frac{1}{4,50 \ \mu\text{F}} = 0,280 \ \mu\text{F}^{-1}$$

(Resposta)

 $C_{123} = \frac{1}{0.280 \ \mu \text{F}^{-1}} = 3,57 \ \mu \text{F}.$

Primeiro, reduzimos o circuito a um único capacitor.

O capacitor equivalente de capacitores em paralelo é maior.

O capacitor equivalente de capacitores em paralelo é maior.

O capacitor equivalente de capacitores em série é menor.

Depois, trabalhamos no caminho inverso até o capacitor desejado.

Para obter a carga, usamos a relação
$$q = CV$$
.

$$V = \begin{bmatrix} C_{12} & & & \\ C_{12} & & \\ 12,5 & & \\ 4,50 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ C_{123} & & \\ 4,50 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ C_{123} & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

$$V = \begin{bmatrix} C_{123} & & \\ 12,5 & & \\ 3,57 & \mu F \end{bmatrix}$$

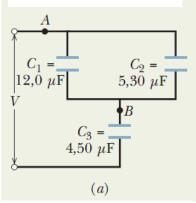
Fig. 25-10

Exemplo: Capacitores em Paralelo e em Série (continuação)

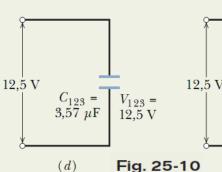
(b) A diferença de potencial aplicada aos terminais de entrada da Fig. 25-10a é V = 12,5 V. Qual é a carga de C_1 ?

$$q_{123} = C_{123}V = (3,57 \,\mu\text{F})(12,5 \,\text{V}) = 44,6 \,\mu\text{C}$$

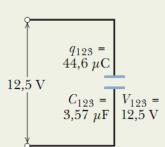
Primeiro, reduzimos o circuito a um único capacitor.



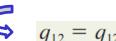
Depois, trabalhamos no caminho inverso até o capacitor desejado.



Para obter a carga, usamos a relação q = CV.



(e)



$$q_{12} = q_{123} = 44.6 \,\mu\text{C}$$

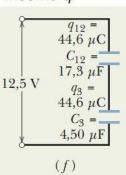
$$V_{12} = \frac{q_{12}}{C_{12}} = \frac{44.6 \,\mu\text{C}}{17.3 \,\mu\text{F}} = 2.58 \,\text{V}$$

$$V_1 = V_{12} = 2,58 \text{ V}$$

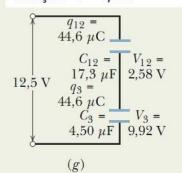
$$q_1 = C_1 V_1 = (12.0 \ \mu\text{F})(2.58 \ \text{V})$$

= 31.0 \(\mu\text{C}\)

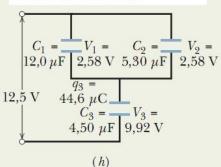
Capacitores em série e o capacitor equivalente têm o mesmo q.



Para obter a diferença de potencial, usamos a relação V = q/C.



Capacitores em paralelo e o capacitor equivalente têm o mesmo V.

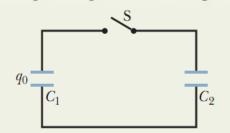


Para obter a carga, usamos a relação q = CV.

Exemplo: Um Capacitor Carregando Outro Capacitor

O capacitor 1, com $C_1 = 3,55 \,\mu\text{C}$, é carregado com uma diferença de potencial $V_0 = 6,30 \,\text{V}$ por uma bateria de 6,30 V. A bateria é removida e o capacitor é ligado, como na Fig. 25-11, a um capacitor descarregado 2, com $C_2 = 8,95 \,\mu\text{F}$. Quando a chave S é fechada, parte da carga de um dos capacitores é transferida para o outro. Determine a carga dos

capacitores depois que o equilíbrio é atingido.



capacitor C_1 e a bateria é removida. Em seguida, a chave S é fechada para que a carga do capacitor 1 seja compartilhada com o capacitor 2.

Figura 25-11 Uma diferença de potencial V_0 é aplicada ao

Cálculos De acordo com a Eq. 25-1, a carga adquirida pelo capacitor 1 quando este estava ligado à bateria é dada por

$$q_0 = C_1 V_0 = (3.55 \times 10^{-6} \,\mathrm{F}) (6.30 \,\mathrm{V})$$

= 22.365 × 10⁻⁶ C.

Quando a chave S da Fig. 25-11 é fechada e o capacitor 1 começa a carregar o capacitor 2, o potencial elétrico e a carga do capacitor 1 diminuem e o potencial elétrico e a carga do capacitor 2 aumentam até que

$$V_1 = V_2$$
 (equilibrio).

De acordo com a Eq. 25-1, essa equação pode ser escrita na forma

$$\frac{q_1}{C_1} = \frac{q_2}{C_2}$$
 (equilibrio).

Como a carga total permanece inalterada, devemos ter $q_1 + q_2 = q_0$ (conservação da carga);

e, portanto,
$$q_2 = q_0 - q_1$$
.

Assim, a segunda equação de equilíbrio pode ser escrita na forma

$$\frac{q_1}{C_1} = \frac{q_0 - q_1}{C_2}.$$

Explicitando q_1 e substituindo os valores conhecidos, obtemos

$$q_1 = 6,35 \,\mu\text{C}.$$
 (Resposta)

O restante da carga inicial ($q_0 = 22,365 \mu C$) deve estar no capacitor 2:

$$q_2 = 16.0 \,\mu\text{C}.$$
 (Resposta)

Energia Armazenada em um Campo Elétrico

Suponha que, em um dado instante, uma carga q' tenha sido transferida de uma placa de um capacitor para a outra. A diferença de potencial V' entre as placas nesse instante é q'/C. Se uma carga adicional dq' é transferida, o trabalho adicional necessário para a transferência é dado por

$$dW = V' dq' = \frac{q'}{C} dq'$$

O trabalho necessário para carregar o capacitor com uma carga final q é dado por

$$W_{ap} = \int dW = \frac{1}{C} \int_0^q q' dq' = \frac{1}{C} \frac{q'^2}{2} \Big|_0^q \Rightarrow W_{ap} = \frac{q^2}{2C} \Rightarrow U = \frac{q^2}{2C}$$

Como esse trabalho é armazenado na forma da energia potencial U do capacitor, temos:

$$U=rac{q^2}{2C}$$
 Energia potencial

Essa equação também pode ser escrita na forma

$$U=rac{q^2}{2C}=rac{(CV)^2}{2C}=rac{C^2V^2}{2C} \quad \Rightarrow \quad \left[U=rac{1}{2}CV^2
ight]$$
 Energia potencial

A energia potencial armazenada em um capacitor carregado está associada ao campo elétrico que existe entre as placas.

Densidade de Energia

Em um capacitor de placas paralelas, desprezando o efeito das bordas, o campo elétrico tem o mesmo valor em todos os pontos situados entre as placas. Assim, a **densidade de energia** u, ou seja, **a energia potencial por unidade de volume** no espaço entre as placas, também é uniforme.

Podemos calcular u dividindo a energia potencial total pelo volume V = Ad do espaço entre as placas.

$$u = \frac{U}{\mathcal{V}} = \frac{U}{Ad} = \frac{1}{2} \frac{CV^2}{Ad}$$

Como $C = \varepsilon_0 A/d$, esse resultado pode ser escrito na forma

$$u = \frac{1}{2} \frac{\varepsilon_0 A}{d} \frac{V^2}{Ad} = \frac{1}{2} \varepsilon_0 \left(\frac{V}{d}\right)^2$$

Como $E = -\Delta V/\Delta s$, V/d é igual ao módulo do campo elétrico **E**. Portanto,

$$V = Ed \qquad \Rightarrow \qquad \frac{V}{d} = E \qquad \Rightarrow \qquad \left[u = \frac{1}{2} \varepsilon_0 E^2 \right]$$

Embora essa expressão tenha sido deduzida para o capacitor de placas paralela, essa expressão se aplica de modo geral

Densidade de energia

Exemplo: Energia Potencial e Densidade de Energia de um Campo Elétrico

Uma esfera condutora isolada cujo raio $R ext{ \'e } 6,85 ext{ cm possui}$ uma carga $q = 1,25 ext{ nC}$.

(a) Qual é a energia potencial armazenada no campo elétrico desse condutor carregado?

IDEIAS-CHAVE

(1) Uma esfera condutora isolada possui uma capacitância dada pela Eq. 25-18 ($C = 4\pi\varepsilon_0 R$); (2) a relação entre a energia U armazenada em um capacitor, a carga q armazenada no capacitor e a capacitância C é dada pela Eq. 25-21 ($U = q^2/2C$).

Cálculo Fazendo $C = 4\pi\varepsilon_0 R$ na Eq. 25-21, obtemos:

$$U = \frac{q^2}{2C} = \frac{q^2}{8\pi\epsilon_0 R}$$

$$= \frac{(1,25 \times 10^{-9} \text{ C})^2}{(8\pi)(8,85 \times 10^{-12} \text{ F/m})(0,0685 \text{ m})}$$

$$= 1,03 \times 10^{-7} \text{ J} = 103 \text{ nJ}. \qquad \text{(Resposta)}$$

(b) Qual é a densidade de energia na superfície da esfera?

IDEIA-CHAVE

De acordo com a Eq. 25-25 ($u = \frac{1}{2} \varepsilon_0 E^2$), a densidade de energia u armazenada em um campo elétrico depende do módulo E do campo.

Cálculos Precisamos determinar o valor de *E* na superfície da esfera. O valor de *E* é dado pela Eq. 23-15:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2}.$$

A densidade de energia é, portanto,

$$u = \frac{1}{2}\varepsilon_0 E^2 = \frac{q^2}{32\pi^2 \varepsilon_0 R^4}$$

$$= \frac{(1,25 \times 10^{-9} \text{ C})^2}{(32\pi^2)(8,85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)(0,0685 \text{ m})^4}$$

$$= 2,54 \times 10^{-5} \text{ J/m}^3 = 25,4\mu\text{J/m}^3. \qquad \text{(Resposta)}$$

Capacitor com um Dielétrico

Em uma região totalmente preenchida por um material dielétrico de constante dielétrica κ , a permissividade do vácuo ε_0 deve ser substituída por $\kappa\varepsilon_0$ em todas as equações.

Um dielétrico é um material isolante, como plástico ou óleo mineral, caracterizado por um *fator numérico* κ , conhecido como constante dielétrica do material.

Alguns dielétricos, como o *titanato de estrôncio*, podem produzir um aumento de mais de duas ordens de grandeza na capacitância de um capacitor.

Outro efeito da introdução de um dielétrico é limitar a diferença de potencial que pode ser aplicada entre as placas a um valor $V_{\text{máx}}$, conhecido como **potencial de ruptura**. A todo material dielétrico pode ser atribuída uma **rigidez dielétrica**, que *corresponde ao máximo valor do campo elétrico que o material pode tolerar sem que ocorra o processo de ruptura*.

Propriedades de Alguns Dielétricos^a

	Constante dielétrica	Rigidez dielétrica
Material	K	(kV/mm)
Ar (1 atm)	1,00054	3
Poliestireno	2,6	24
Papel	3,5	16
Óleo de		
transformador	4,5	
Pirex	4,7	14
Mica rubi	5,4	
Porcelana	6,5	
Silício	12	
Germânio	16	
Etanol	25	
Água (20°C)	80,4	
Água (25°C)	78,5	
Titânia	130	
Titanato de		
estrôncio	310	8

Para o vácuo, $\kappa = 1$.

^aMedidas à temperatura ambiente, exceto no caso da água.

Exemplo: Trabalho e Energia Quando um Dielétrico é Introduzido em um Capacitor

Umcapacitor de placas paralelas cuja capacitância C é 13,5 pF é carregado por uma bateria até que haja uma diferença de potencial V = 12,5 V entre as placas. A bateria é desligada e uma barra de porcelana ($\kappa = 6,50$) é introduzida entre as placas.

(a) Qual é a energia potencial do capacitor antes da introdução da barra?

IDEIA-CHAVE

A energia potencial U_i do capacitor está relacionada à capacitância C e ao potencial V (através da Eq. 25-22) ou à carga q (através da Eq. 25-21):

$$U_i = \frac{1}{2}CV^2 = \frac{q^2}{2C}.$$

Cálculo Como conhecemos o potencial inicial V = 12,5 V), podemos usar a Eq. 25-22 para calcular a energia potencial inicial:

$$U_i = \frac{1}{2}CV^2 = \frac{1}{2}(13.5 \times 10^{-12} \text{ F})(12.5 \text{ V})^2$$

= 1.055 × 10⁻⁹ J = 1055 pJ ≈ 1100 pJ. (Resposta)

(b) Qual é a energia potencial do conjunto capacitor – barra depois que a barra é introduzida?

IDEIA-CHAVE

Como a bateria foi desligada, a carga do capacitor não pode mudar quando o dielétrico é introduzido. Entretanto, o potencial *pode* mudar.

Cálculos Devemos usar a Eq. 25-21 para calcular a energia potencial final U_f , mas agora, que o espaço entre as placas do capacitor está ocupado pela barra de porcelana, a capacitância é κC . Assim, temos:

$$U_f = \frac{q^2}{2\kappa C} = \frac{U_i}{\kappa} = \frac{1055 \text{ pJ}}{6,50}$$

= 162 pJ \approx 160 pJ. (Resposta)

Isto mostra que quando a placa de porcelana é introduzida, a energia potencial é dividida por κ .

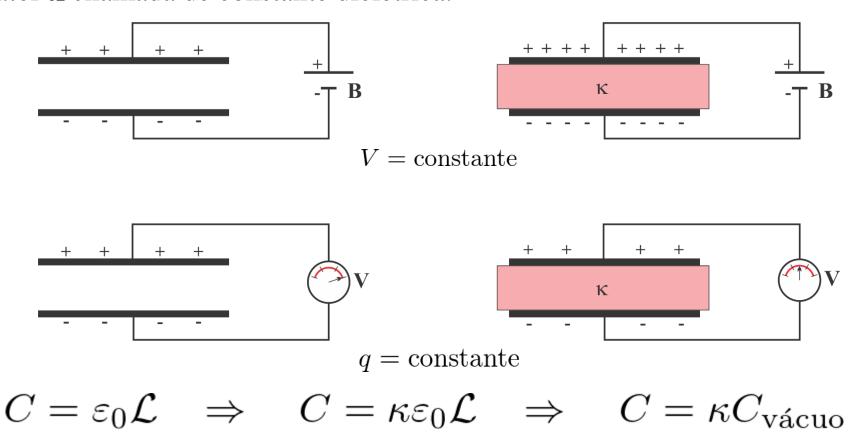
A energia "que falta", em princípio, poderia ser medida pela pessoa encarregada de introduzir a barra de porcelana, já que o capacitor atrai a barra e realiza sobre ela um trabalho dado por

$$W = U_i - U_f = (1055 - 162) \text{ pJ} = 893 \text{ pJ}.$$

Se a barra penetrasse livremente no espaço entre as placas e não houvesse atrito, passaria a oscilar de um lado para outro com uma energia mecânica (constante) de 893 pJ; essa energia seria convertida alternadamente de energia cinética do movimento da placa em energia potencial armazenada no campo elétrico.

Capacitor com Dielétrico

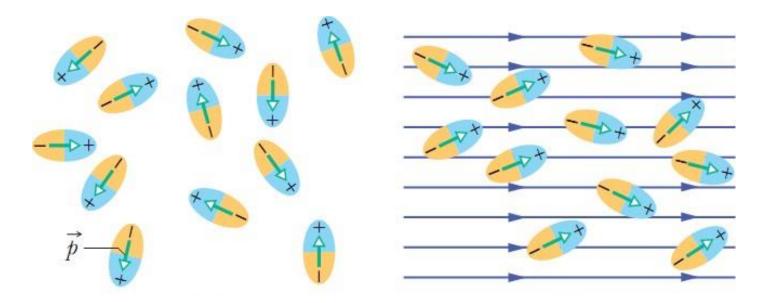
Um capacitor com um dielétrico tem sua capacitância aumentada por um fator κ chamada de constante dielétrica.



Em uma região completamente preenchida por um material de constante dielétrica κ , todas as equações contendo ε_0 devem ser modificadas substituindo ε_0 por $\varepsilon = \kappa \varepsilon_0$.

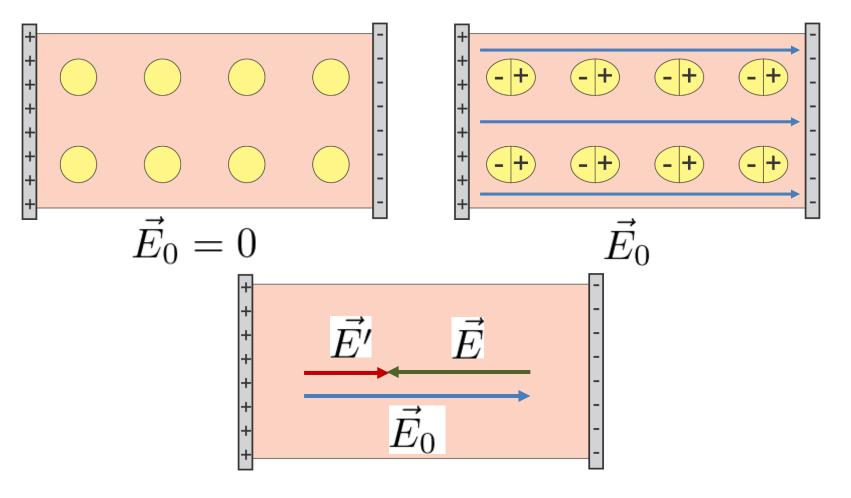
к é uma constante adimensional!

Dielétricos: uma Visão Atômica



1. Dielétricos polares. As moléculas de alguns dielétricos, como a água, possuem um momento dipolar elétrico permanente. Nesses materiais (conhecidos como dielétricos polares), os dipolos elétricos tendem a se alinhar com um campo elétrico externo, como mostra a Figura. Como as moléculas estão constantemente se chocando umas com as outras devido à agitação térmica, o alinhamento não é perfeito, mas tende a aumentar quando o campo elétrico aumenta (ou quando a temperatura diminui, já que, nesse caso, a agitação térmica é menor). O alinhamento dos dipolos elétricos produz um campo elétrico no sentido oposto ao do campo elétrico aplicado e com um módulo, em geral, bem menor que o do campo aplicado.

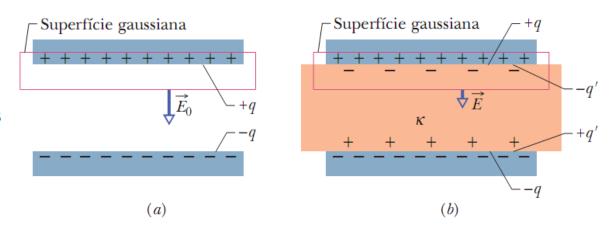
Dielétricos: uma Visão Atômica



2. Dielétricos apolares. Mesmo que não possuam um momento dipolar elétrico permanente, as moléculas adquirem um momento dipolar por indução quando são submetidas a um campo elétrico externo. Isso acontece porque o campo externo tende a "alongar" as moléculas, deslocando ligeiramente o centro das cargas negativas em relação ao centro das cargas positivas.

Dielétricos e a Lei de Gauss

Figura 25-16 Capacitor de placas paralelas (a) sem e (b) com um dielétrico entre as placas. A carga q das placas é tomada como a mesma nos dois casos.

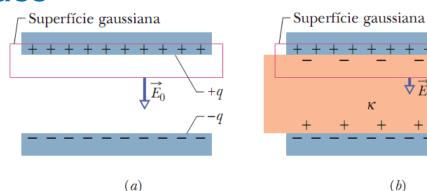


Na situação da Fig. 25-16a, sem um dielétrico, podemos calcular o campo elétrico entre as placas usando a lei de Gauss. Envolvemos a carga q da placa superior com uma superfície gaussiana e aplicamos a lei de Gauss. Chamando de E_0 o módulo do campo, temos:

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 E_0 A = q \quad \Rightarrow \quad E_0 = \frac{q}{\varepsilon_0 A}$$

Dielétricos e a Lei de Gauss

Figura 25-16 Capacitor de placas paralelas (a) sem e (b) com um dielétrico entre as placas. A carga q das placas é tomada como a mesma nos dois casos.



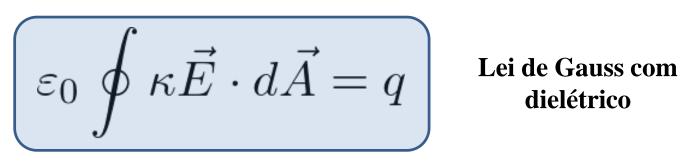
Na Fig. 25-16*b*, com um dielétrico no espaço entre as placas, podemos calcular o campo elétrico entre as placas (e no interior do dielétrico) usando a mesma superfície gaussiana. Agora, porém, a superfície envolve dois tipos de cargas: a carga +*q* da placa superior do capacitor e a carga induzida –*q'* da superfície superior do dielétrico. Dizemos que a carga da placa do capacitor é uma *carga livre* porque pode se mover sob a ação de um campo elétrico aplicado; a carga induzida na superfície do dielétrico não é uma carga livre, pois não pode deixar o local em que se encontra.

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 E A = q - q' \quad \Rightarrow \quad E = \frac{q - q'}{\varepsilon_0 A}$$

O efeito do dielétrico é dividir por κ o campo original E_0 : $E = \frac{E_0}{\kappa} = \frac{q}{\kappa \varepsilon_0 A}$

$$\frac{q}{\kappa \varepsilon_0 A} = \frac{q - q'}{\varepsilon_0 A} \quad \Rightarrow \quad \frac{q}{\kappa} = q - q' \quad \Rightarrow \quad \varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \frac{q}{\kappa}$$

Dielétricos e a Lei de Gauss



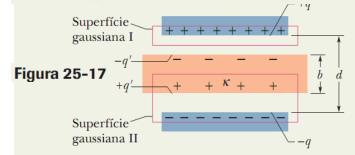
1. A integral de fluxo agora envolve o produto κE em vez de E. O vetor $\varepsilon_0 \kappa E$ recebe o nome de deslocamento elétrico e é representado pelo símbolo D; assim, a equação acima pode ser escrita na forma

$$\oint \vec{D} \cdot d\vec{A} = q$$

- 2. A carga q envolvida pela superfície gaussiana agora é tomada como sendo apenas a carga livre. A carga induzida nas superfícies do dielétrico é deliberadamente ignorada no lado direito da equação acima, pois seus efeitos já foram levados em conta quando a constante dielétrica κ foi introduzida no lado esquerdo.
- 3. ε_0 é substituído por $\kappa \varepsilon_0$. Mantemos κ no interior da integral para incluir os casos em que κ não é a mesma em todos os pontos da superfície gaussiana.
- 4. A constante dielétrica κ é também chamada de *permissividade elétrica relativa*, uma vez que ela é dada pela razão $\varepsilon/\varepsilon_0$.

Exemplo: Dielétrico Preenchendo Parcialmente o Espaço Entre as Placas

A Fig. 25-17 mostra um capacitor de placas paralelas em que a área das placas é A e a distância entre as placas é d. Uma diferença de potencial V_0 é aplicada entre as placas quando estas são ligadas a uma bateria. Em seguida, a bateria é desligada e uma barra de dielétrico de espessura b e constante dielétrica κ é introduzida entre as placas, da forma mostrada na figura. Suponha que A = 115 cm², d = 1,24 cm, $V_0 = 85,5$ V, b = 0,780 cm e $\kappa = 2,61$.



(a) Qual é a capacitância C_0 antes da introdução do dielétrico?

Cálculo De acordo com a Eq. 25-9, temos:

$$C_0 = \frac{\varepsilon_0 A}{d} = \frac{(8,85 \times 10^{-12} \text{ F/m})(115 \times 10^{-4} \text{ m}^2)}{1,24 \times 10^{-2} \text{ m}}$$
$$= 8,21 \times 10^{-12} \text{ F} = 8,21 \text{ pF}. \qquad \text{(Resposta)}$$

(b) Qual é o valor da carga das placas?

Cálculo De acordo com a Eq. 25-1, temos:

$$q = C_0 V_0 = (8.21 \times 10^{-12} \text{ F})(85.5 \text{ V})$$

= 7.02 × 10⁻¹⁰ C = 702 pC. (Resposta)

Como a bateria usada para carregar o capacitor foi desligada antes que o dielétrico fosse introduzido, a carga das placas não muda quando o dielétrico é introduzido.

(c) Qual é o campo elétrico E_0 nos espaços entre as placas do capacitor e o dielétrico?

Cálculos Como esta superfície passa pelo espaço vazio entre o capacitor e o dielétrico, envolve *apenas* a carga livre da placa superior do capacitor. Como o vetor área $d\vec{A}$ e o vetor campo \vec{E}_0 apontam verticalmente para baixo, o produto escalar da Eq. 25-36 se torna

$$\vec{E}_0 \cdot d\vec{A} = E_0 dA \cos 0^\circ = E_0 dA.$$

Nesse caso, a Eq. 25-36 assume a forma

$$\varepsilon_0 \kappa E_0 \oint dA = q.$$

A integração agora nos dá simplesmente a área *A* da placa. Assim, temos:

$$\varepsilon_0 \kappa E_0 A = q,$$

ou

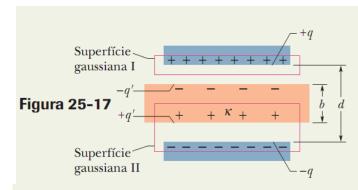
$$E_0 = \frac{q}{\varepsilon_0 \kappa A}.$$

Devemos fazer $\kappa = 1$ porque a superfície gaussiana I não passa pelo dielétrico. Assim, temos:

$$E_0 = \frac{q}{\varepsilon_0 \kappa A} = \frac{7,02 \times 10^{-10} \text{ C}}{(8,85 \times 10^{-12} \text{ F/m})(1)(115 \times 10^{-4} \text{ m}^2)}$$
$$= 6900 \text{ V/m} = 6,90 \text{ kV/m}. \qquad (\text{Resposta})$$

Observe que o valor de E_0 não varia quando o dielétrico é introduzido porque a carga envolvida pela superfície gaussiana I da Fig. 25-17 não varia.

Exemplo: Dielétrico Preenchendo Parcialmente o Espaço Entre as Placas (cont.)



(d) Qual é o campo elétrico E_1 no interior do dielétrico?

Cálculos Essa superfície envolve a carga livre -q e a carga induzida +q', mas a segunda deve ser ignorada quando usamos a Eq. 25-36. O resultado é o seguinte:

$$\varepsilon_0 \oint \kappa \vec{E}_1 \cdot d\vec{A} = -\varepsilon_0 \kappa E_1 A = -q. \tag{25-37}$$

O primeiro sinal negativo da equação vem do produto escalar $\vec{E}_1 \cdot d\vec{A}$ ao longo da face superior da superfície gaussiana, já que agora o vetor campo \vec{E}_1 aponta verticalmente para baixo e o vetor área $d\vec{A}$ (que, como sempre, aponta para fora da superfície gaussiana) aponta verticalmente para cima. Como os vetores fazem um ângulo de 180°, o produto escalar é negativo. Desta vez, a constante dielétrica é a do dielétrico ($\kappa = 2,61$). Assim, a Eq. 25-37 nos dá

$$E_1 = \frac{q}{\varepsilon_0 \kappa A} = \frac{E_0}{\kappa} = \frac{6,90 \text{ kV/m}}{2,61}$$
$$= 2,64 \text{ kV/m}. \qquad (Resposta)$$

(e) Qual é a diferença de potencial *V* entre as placas depois da introdução do dielétrico?

Cálculo No interior do dielétrico, a distância percorrida é b e o campo elétrico é E_1 ; nos espaços vazios entre as placas do capacitor e a superfície do dielétrico, a distância percorrida é d-b e o campo elétrico é E_0 . De acordo com a Eq. 25-6, temos:

$$V = \int_{-}^{+} E \, ds = E_0(d - b) + E_1 b$$

$$= (6900 \text{ V/m})(0.0124 \text{ m} - 0.00780 \text{ m})$$

$$+ (2640 \text{ V/m})(0.00780 \text{ m})$$

$$= 52.3 \text{ V}. \qquad \text{(Resposta)}$$

Este valor é menor que a diferença de potencial original de 85,5 V.

(f) Qual é a capacitância com o dielétrico entre as placas do capacitor?

Cálculo Usando o valor de q calculado no item (b) e o valor de V calculado no item (e), temos:

$$C = \frac{q}{V} = \frac{7,02 \times 10^{-10} \text{ C}}{52,3 \text{ V}}$$

= 1,34 × 10⁻¹¹ F = 13,4 pF. (Resposta)

Este valor é maior que a capacitância original de 8,21 pF.